10251

1 
(* Title: HOL/Library/While.thy


2 
ID: $Id$


3 
Author: Tobias Nipkow


4 
Copyright 2000 TU Muenchen


5 
*)


6 


7 
header {*


8 
\title{A general ``while'' combinator}


9 
\author{Tobias Nipkow}


10 
*}


11 


12 
theory While_Combinator = Main:


13 


14 
text {*


15 
We define a whilecombinator @{term while} and prove: (a) an


16 
unrestricted unfolding law (even if while diverges!) (I got this


17 
idea from Wolfgang Goerigk), and (b) the invariant rule for reasoning


18 
about @{term while}.


19 
*}


20 


21 
consts while_aux :: "('a => bool) \<times> ('a => 'a) \<times> 'a => 'a"


22 
recdef while_aux


23 
"same_fst (\<lambda>b. True) (\<lambda>b. same_fst (\<lambda>c. True) (\<lambda>c.


24 
{(t, s). b s \<and> c s = t \<and>


25 
\<not> (\<exists>f. f 0 = s \<and> (\<forall>i. b (f i) \<and> c (f i) = f (i + 1)))}))"


26 
"while_aux (b, c, s) =


27 
(if (\<exists>f. f 0 = s \<and> (\<forall>i. b (f i) \<and> c (f i) = f (i + 1)))


28 
then arbitrary


29 
else if b s then while_aux (b, c, c s)


30 
else s)"


31 


32 
constdefs


33 
while :: "('a => bool) => ('a => 'a) => 'a => 'a"


34 
"while b c s == while_aux (b, c, s)"


35 


36 
ML_setup {*


37 
goalw_cterm [] (cterm_of (sign_of (the_context ()))


38 
(HOLogic.mk_Trueprop (hd while_aux.tcs)));


39 
br wf_same_fstI 1;


40 
br wf_same_fstI 1;


41 
by (asm_full_simp_tac (simpset() addsimps [wf_iff_no_infinite_down_chain]) 1);


42 
by (Blast_tac 1);


43 
qed "while_aux_tc";


44 
*} (* FIXME cannot prove recdef tcs in Isar yet! *)


45 


46 
lemma while_aux_unfold:


47 
"while_aux (b, c, s) =


48 
(if \<exists>f. f 0 = s \<and> (\<forall>i. b (f i) \<and> c (f i) = f (i + 1))


49 
then arbitrary


50 
else if b s then while_aux (b, c, c s)


51 
else s)"


52 
apply (rule while_aux_tc [THEN while_aux.simps [THEN trans]])


53 
apply (simp add: same_fst_def)


54 
apply (rule refl)


55 
done


56 


57 
text {*


58 
The recursion equation for @{term while}: directly executable!


59 
*}


60 


61 
theorem while_unfold:


62 
"while b c s = (if b s then while b c (c s) else s)"


63 
apply (unfold while_def)


64 
apply (rule while_aux_unfold [THEN trans])


65 
apply auto


66 
apply (subst while_aux_unfold)


67 
apply simp


68 
apply clarify


69 
apply (erule_tac x = "\<lambda>i. f (Suc i)" in allE)


70 
apply blast


71 
done


72 


73 
text {*


74 
The proof rule for @{term while}, where @{term P} is the invariant.


75 
*}


76 


77 
theorem while_rule [rule_format]:


78 
"(!!s. P s ==> b s ==> P (c s)) ==>


79 
(!!s. P s ==> \<not> b s ==> Q s) ==>


80 
wf {(t, s). P s \<and> b s \<and> t = c s} ==>


81 
P s > Q (while b c s)"


82 
proof 


83 
case antecedent


84 
assume wf: "wf {(t, s). P s \<and> b s \<and> t = c s}"


85 
show ?thesis


86 
apply (induct s rule: wf [THEN wf_induct])


87 
apply simp


88 
apply clarify


89 
apply (subst while_unfold)


90 
apply (simp add: antecedent)


91 
done


92 
qed


93 


94 
hide const while_aux


95 


96 
text {*


97 
\medskip An application: computation of the @{term lfp} on finite


98 
sets via iteration.


99 
*}


100 


101 
theorem lfp_conv_while:


102 
"mono f ==> finite U ==> f U = U ==>


103 
lfp f = fst (while (\<lambda>(A, fA). A \<noteq> fA) (\<lambda>(A, fA). (fA, f fA)) ({}, f {}))"


104 
apply (rule_tac P =


105 
"\<lambda>(A, B). (A \<subseteq> U \<and> B = f A \<and> A \<subseteq> B \<and> B \<subseteq> lfp f)" in while_rule)


106 
apply (subst lfp_unfold)


107 
apply assumption


108 
apply clarsimp


109 
apply (blast dest: monoD)


110 
apply (fastsimp intro!: lfp_lowerbound)


111 
apply (rule_tac r = "((Pow U <*> UNIV) <*> (Pow U <*> UNIV)) \<inter>


112 
inv_image finite_psubset (op  U o fst)" in wf_subset)


113 
apply (blast intro: wf_finite_psubset Int_lower2 [THEN [2] wf_subset])


114 
apply (clarsimp simp add: inv_image_def finite_psubset_def order_less_le)


115 
apply (blast intro!: finite_Diff dest: monoD)


116 
apply (subst lfp_unfold)


117 
apply assumption


118 
apply (simp add: monoD)


119 
done


120 


121 
end
